
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

An Empirical Study of Patch Uplift in Rapid Release
Development Pipelines

Marco Castelluccio · Le An · Foutse
Khomh

Received: date / Accepted: date

Abstract In rapid release development processes, patches that fix critical is-
sues, or implement high-value features are often promoted directly from the
development channel to a stabilization channel, potentially skipping one or
more stabilization channels. This practice is called patch uplift. Patch uplift
is risky, because patches that are rushed through the stabilization phase can
end up introducing regressions in the code. This paper examines patch uplift
operations at Mozilla, with the aim to identify the characteristics of the up-
lifted patches that did not effectively fix the targeted problem and that intro-
duced regressions. Through statistical and manual analyses, a series of prob-
lems were investigated, including the reasons behind patch uplift decisions,
the root causes of ineffective uplifts, the characteristics of uplifted patches
that introduced regressions, and whether these regressions can be prevented.
Additionally, three Mozilla release managers were interviewed in order to un-
derstand organizational factors that affect patch uplift decisions and outcomes.
Results show that most patches are uplifted because of a wrong functionality or
a crash. Certain uplifts did not effectively address their problems because they
did not completely fix the problems or lead to regressions. Uplifted patches
that lead to regressions tend to have larger patch size, and most of the faults
are due to semantic or memory errors in the patches. Also, release managers
are more inclined to accept patch uplift requests that concern certain specific

Marco Castelluccio
Mozilla Corporation, United Kingdom
Università Federico II, Italy
E-mail: mcastelluccio@mozilla.com

Le An
Polytechnique Montreal, Canada
E-mail: le.an@polymtl.ca

Foutse Khomh
Polytechnique Montreal, Canada
E-mail: foutse.khomh@polymtl.ca

2 Marco Castelluccio et al.

components, and–or that are submitted by certain specific developers. About
25% to 30% of the regressions due to Beta or Release uplifts could have been
prevented as they could be reproduced by developers and were found in widely
used feature/website/configuration or via telemetry.

Keywords Patch uplift · Urgent update · Mining software repositories ·
Release engineering

1 Introduction

The advent of continuous delivery and rapid release practices have signifi-
cantly reduced the amount of stabilization time available for new features,
forcing companies to resort to innovative techniques to ensure that impor-
tant features are released to the public, in a timely manner and with a good
quality. To cope with short release cycles, Mozilla has re-organized its release
process around four channels: a development channel named Nightly, two sta-
bilization channels (Aurora and Beta), and a main Release channel. Features
corresponding to a new release are developed on the Nightly channel over a
period of six weeks. After that, the code is transferred to Aurora, where it is
tested by Mozilla developers and contributors, for a period of six weeks, and
then to Beta where it is tested by a selected group of external users. Finally,
mature Beta features are imported into the main Release channel and delivered
to end users. This pipelined process allows Mozilla to avoid mixing the devel-
opment of new features with the stabilization process, which is particularly
important given that integration operations are unpredictable [35], and can
significantly delay a release process, if not enough time is allowed for stabiliza-
tion. However, this well organized release process is frequently subverted by
urgent patches, implementing high-value features or critical fixes, that cannot
wait for the next release train. These features and fixes are directly promoted
from the development channel to stable channels (i.e., Aurora, Beta, and main
Release), a practice called patch uplift. Patch uplift is risky because the time
allowed for the stabilization of uplifted patches is reduced by six weeks for
each skipped channel. Therefore, it is important to carefully pick the patches
that are uplifted and ensure that developers scrutinize them properly, to re-
duce the risk of regressions. There are a set of rules in place at Mozilla to
govern this uplift process. One of these rules is that patches uplifted to the
Beta channel should be (1) ideally reproducible by the QA team, so that they
can be verified; (2) should have been verified on Aurora/Nightly first; and (3)
should not contain string changes (i.e., changes in the text which is visible to
users). However, despite these rules, multiple uplifted patches still introduce
regressions in the code. Hence, it is unclear if–and–how the rules are enforced
at Mozilla and why certain uplifted patches introduce post-release bugs.

In this paper, we conduct a series of quantitative and qualitative analy-
ses to understand the decision making process of patch uplift at Mozilla and
the characteristics of uplifted patches that introduce regressions. Overall, we

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 3

analyze 33,664 issue reports (corresponding to 7,267 uplift requests) in 17 ver-
sions of Firefox over a period of two years and answer the following research
questions:

RQ1: What are the characteristics of patches that are uplifted?

We observed that most patches are uplifted to resolve wrong functionali-
ties or crashes. Rejected uplift requests required longer decision time than
accepted requests. We attribute this difference to the high complexity of
these rejected patches (since complex patches require longer time for risk
assessment). Last but not least, release managers tend to trust patches that
concern certain specific components, and–or that are submitted by certain
specific developers.

RQ2: How effective are uplift operations?

4% of the subject uplifts did not effectively address the problems but were
later reopened, duplicate or cloned into another issue, or required addi-
tional uplifts to fix the issue. Two major root causes were observed from
the ineffective uplifts: the uplifts only partially fixed the issues or caused
regressions. Higher proportion of ineffective uplifts were detected from the
Release channel than from Aurora and Beta.

RQ3: What are the characteristics of uplifted patches that introduced faults in
the system?

From our analysis, we observed that uplifted patches that lead to faults tend
to have larger patch size; suggesting that developers and release managers
need to carefully review patch candidates for uplift with a large amount
of changes, before allowing for their uplift. Most faulty uplifts are due to
semantic or memory-related errors. We also observed that patches related
to certain components and–or submitted by certain developers are more
likely to cause faults.

RQ4: Are regressions caused by uplift more severe than the bugs that were
fixed with the uplift?

Through a manual analysis, we observed that 37.5% of the Beta fault-
inducing uplifts caused a “more severe regression”, i.e., regression that is
more severe than the problems they aimed to address. No “more severe
regression” was found from the examined Release uplifts, perhaps due to a
more strict uplift policy and code review process on this channel.

RQ5: Could some of the regressions have been prevented through more exten-
sive testing on the channels?

We considered regressions to be possibly preventable if they were repro-
ducible not only by the issue reporter and were found either on a widely
used feature/website/configuration or via Mozilla’s telemetry. We manu-
ally examined a sample of regressions due to Beta and Release uplifts,
and found that 25% of the regressions due to Beta uplifts and 30% of the
regressions due to Release uplifts could have been possibly prevented.

4 Marco Castelluccio et al.

This paper is an extension of an earlier conference paper [5]. Our original
work:

1. Quantitatively and qualitatively analyzed the characteristics of the uplifted
patches and identify the reasons why these patches were release ahead of
time;

2. Quantitatively and qualitatively analyzed the characteristics the uplifted
patches that led to regressions and identify the root causes of these failed
uplifts.

In this extension work, we expand our analysis in three ways:

1. We identified and analyzed the reoccurrences of the already uplifted patches
in forms of reopened, cloned, duplicate issues and issues that were fixed by
multiple uplifts;

2. We compared the severity of the regression an uplifted patch led to against
the problem the patch intended to address;

3. We identified the failed uplifts that could have been possibly prevented
through more extensive testing.

The remainder of this paper is organized as follows. Section 2
provides background information about patch uplift. Section 3 describes the
design of our case study. Section 4 presents the results of the case study.
Section 5 discusses threats to the validity of this study. Section 6 summarizes
related works, and Section 7 concludes the paper.

2 Mozilla Patch Uplift Process

This section describes the Mozilla patch uplift process and the rules governing
this process.

Firefox follows a pipelined release process [16], with four release channels
(Nightly, Aurora, Beta, and Release). New feature work is done on the Nightly
channel, while Aurora and Beta serve as stabilization channels, and the Release
channel is used to deliver the software to end users. Every six weeks, there is
a merge day, when the code from a less stable channel flows into a more stable
one (e.g., the Nightly code is moved in the Aurora repository). Most of the
development work is performed in the Nightly channel, where patches can
be committed after a normal review process. For the stabilization channels,
a different process for committing patches has been put in place (i.e., patch
uplift), to keep the channels as stable as possible (as code committed to Aurora
and Beta is closer to be released to users). Patches with important features or
severe fault fixes that cannot wait for the entire process are promoted directly
from the development channel to one of the stable channels, skipping the
stabilization phase on one or more channels.

The lifecycle of an uplifted patch can be summarized as follows: developers
write a patch, which gets reviewed by one or more reviewers. After a successful
review, the patch is committed to the Nightly channel. If developers (or other

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 5

stakeholders) believe that the patch is particularly important (e.g., it fixes a
frequent crash, or a performance issue), they can ask for approval to uplift the
patch to one (or more) of the stable channels, i.e., Aurora, Beta, or Release.

Release managers (who are independent and different from reviewers) are
responsible for deciding which patches can be uplifted. They can either accept
or reject the patch uplift request, after a careful consideration of the risks
involved.

The more a channel is stable, the higher is the bar for approval of uplift
requests. Below we present an excerpt of the rules in place at Mozilla on the
different channels.

– Aurora: Uplifts to the Aurora channel are less critical, as they still have
considerable time for stabilization. The rules are not strict in this case:
no new features are accepted; no disruptive refactorings; no massive code
changes; no string changes, unless the localization team is aware and has
approved; they must be accompanied, if possible, by automated tests.

– Beta: Uplifts to the Beta channel are more critical, as they have less time for
stabilization. In addition to the rules outlined for Aurora, the changes up-
lifted to the Beta channel should be (1) ideally reproducible by QA, so that
they can be verified; (2) they should have been verified on Aurora/Nightly
first; and should not contain (3) changes to the user-visible strings in the
application (as those require a very high effort and time to be localized,
since Mozilla relies on volunteer contributors). The uplifted changes can
be proven performance improvements, fixes to important crashes, fixes for
recent regressions. The closer to the release date, the stricter the release
managers should be in enforcing the rules.

– Release: Uplifts to the Release channel are generally discouraged, as they
require a new version to be built and released to users. Possible uplifts are
fixes for major top crashes, security issues, functional regressions with a
very broad impact.

Once a patch is accepted for uplift, Tree Sheriffs [26] (i.e., engineers re-
sponsible for supporting developers in committing patches and ensuring that
the automated tests are not broken after commits, monitoring intermittent
failures and backing out patches in case of test failures) or the developers
themselves can commit it to the stabilization channel(s) for which the patch
was approved.

3 Case Study Design

In this section, we describe the data collection and analysis approaches that
we used to answer our five research questions.

6 Marco Castelluccio et al.

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●
●

●

●

●
●

0

50

100

150

200

250

Ju
l 2

01
4

Aug
 2

01
4

Sep
 2

01
4

Oct
20

14

Nov
 2

01
4

Dec
 2

01
4

Ja
n

20
15

Fe
b

20
15

M
ar

 2
01

5

Apr
 2

01
5

M
ay

 2
01

5

Ju
n

20
15

Ju
l 2

01
5

Aug
 2

01
5

Sep
 2

01
5

Oct
20

15

Nov
 2

01
5

Dec
 2

01
5

Ja
n

20
16

Fe
b

20
16

M
ar

 2
01

6

Apr
 2

01
6

M
ay

 2
01

6

Ju
n

20
16

Ju
l 2

01
6

Aug
 2

01
6

Periods Removed Selected Channel ● aurora beta release

Fig. 1 Number of uplifts during each month from July 2014 to August 2016. Periods with
low number of uplifts or not covering all the three channels are removed.

3.1 Data Collection

We collected, from the Mozilla issue tracking system (Bugzilla), all issues
marked as resolved or verified in the Firefox and Core products between July
2014 (release date of Firefox 31.0) and August 2016 (release date of Firefox
48.0). In total, there are 35,826 issue reports in our dataset.

Mozilla developers use customized Bugzilla flags to request for patch up-
lifts. These flags have the form approval-mozilla-CHANNEL, where CHANNEL

can be Aurora, Beta, or Release. The postfix of the flag is set to a question
mark (?) when a developer asks for an uplift, to a minus sign (-) if the re-
lease manager rejects the uplift, and to a plus sign (+) if the release manager
approves the uplift. We relied on these flags to identify uplifted patches. At
Mozilla, release managers usually inspect all patches in an issue report before
deciding whether they can be uplifted together. Thus, in this work, we con-
sidered uplift characteristics at the issue level. If an issue contains multiple
patches, we bundled the patches together. To study the patch uplift process,
we need to consider a period of time during which the practice was well es-
tablished at Mozilla. To decide on this period, we computed the amount of
patches that were uplifted each month, over our initial period of July 2014
to August 2016. Figure 1 shows the distribution of the number of uplifts in
three Firefox’s release channels during this period. We did not consider uplifts
that concern the “Pocket” component, as the inclusion of Pocket (which is a
third-party add-on) in Firefox, a one-time event, might introduce noise in our
data. In Figure 1, each time point represents a period of one month (we can
see that the Release channel did not receive any uplift in May and November
2015). Figure 1 shows that the number of uplifted patches increased from July
2014 to August 2014 and then became stable from September 2014 to August
2016. Based on this distribution, we selected the period between September
2014 and August 2016, for our study. In other words, we limited our dataset
to only issue reports and commits that occurred within this period. Between
September 2014 and August 2016, we study in total 33,664 issue reports, in
which there are 7,267 uplift requests: 285 to Release, 2,614 to Beta, and 4,368
to Aurora.

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 7

Version Control
System

(Mercurial)

Quantitative &
qualitative
analyses

RQ1
to

 RQ5

Issue Repository
(Bugzilla)

Source code metrics

Extract patches

Commit logs

Issue reports

Identify fault-
related issues

Identify fault-
inducing patches

Identify uplifted reports Developer &
sentiment metrics

bu
g

co
m

m
it

m
ap

pi
ng

Fig. 2 Overview of our data processing approach.

3.2 Data processing

Figure 2 shows a general overview of our approach. We describe each step of
the approach below. The corresponding data and scripts are available online
at: https://github.com/swatlab/uplift-analysis.

3.2.1 Identification of Fault-related Issues

Mozilla uses Bugzilla to manage and track its issues. All types of issues,
whether they are faults or new features, are managed in this system. Unlike
JIRA [43], which offers the possibility to distinguish between issues using a tag,
Bugzilla does not provide issue type information. Therefore, our first process-
ing task is to differentiate issues that are related to faults, from new feature
requests or improvements. To automatically identify fault-related issues, we
used a keyword-based heuristic to search information in the title, description,
flags, and user comments of each issue report. Our list of keywords includes:
crash, regression, failure, leak, steps to reproduce (STR), and hang. The full
list is available at: https://github.com/swatlab/uplift-analysis.

To ensure the accuracy of our detection on fault-related issues, we man-
ually validated a sample of our results. From a total of 33,664 issue reports,
we randomly selected a sample of 380 issue reports, which corresponds to a
confidence level of 95% and a confidence interval of 5%. The first and the
second authors read each of the 380 issue reports independently and classified
them into fault-related and other categories. We then compared their classifi-
cation results and observed that 41 issue reports were classified into different
categories by the two authors. To resolve these discrepancies, we created an
online document for the 41 issues; allowing all of the authors to comment and
discuss the issues. After this round, a consensus was reached for 35 out of the
41 issues. For the remaining 6 issues, we organized a meeting and discussed the
classification of each of them until a consensus was found. The result of our
manual classification shows that our keyword-based heuristic achieves a pre-
cision of 87.3% and a recall of 78.2%, when classifying issues into fault-related
(the true class) and other (the false class) categories.

https://github.com/swatlab/uplift-analysis
https://github.com/swatlab/uplift-analysis

8 Marco Castelluccio et al.

3.2.2 Identification of Fault-inducing Patches

We used the SZZ algorithm [36] to identify patches (these patches could be
fault-fixing patches or patches related to features or improvements) that in-
troduced faults in the system. First, we used Fischer et al.’s heuristics [11]
to map each studied issue to its corresponding patch(es) (i.e., commits). This
heuristic consists in looking for issue IDs in commit messages using regular
expressions. Next, for each fault-related issue, we used the following Mercurial
command to extract the list of files that were changed to fix the issue:

hg log --template {commit},{file mods},{file dels}

In this step, we only considered modified and deleted lines, since added lines
could not have been changed by prior commits. We denoted an issue’s fault-
fixing file by Ffix. Then, for each changed file ffix | ffix ∈ Ffix, we used Mer-
curial’s annotate command as follow to check which prior commits changed
the lines that were modified by the fault-fixing commits. The SZZ algorithm
assumes that the fault is located in these lines.

hg annotate commit^ -r f fix -c -l -w -b -B

We refer to the obtained commits as fault-inducing candidates. Finally, we
examined whether a fault-inducing candidate was submitted before the cre-
ation date of its corresponding fault-related issue report. If so, we considered
the candidate to be a fault-inducing commit, and its related issue to be a
fault-inducing issue.

3.2.3 Identification of Duplicate Issues

There has not been an approach that can identify duplicate issues1 with 100%
accuracy. Two general threads of approaches were proposed in previous works.
The first thread of approaches ranks the similarity between one given issue and
other issues in a dataset, such as [32, 37, 44]. The other thread predicts whether
two given issue reports are duplicate or not, such as [15, 38, 41]. Inspired by
these works, we designed the following approach, which is customized for our
dataset.

1. For each subject issue report, we extracted its short description (i.e., title)
and long description (i.e., first comment). We performed stemming and
stop word removal against these raw texts.

2. As [38, 41], we used Okapi BM25 algorithm [45] (referred as BM25 in
the rest of the paper) to rank of the similarity between any pair of is-
sues: {(issuei, issuej) | i 6= j, issuei ∈ uplift bugs, issuej ∈ all bugs}.
In a given pair of (issuei, issuej), we respectively calculated the sim-
ilarity between their titles and their descriptions. As there are in total
33,664 studied issues and 4,958 unique uplifted issues2, we should perform

1 In this paper, “duplicate” issues indicate different issues that aim to address the same
problem, rather than DUPLICATE in the Bugzilla sense, which means identical issues.

2 There are in total 7,267 studied uplift requests, but some requests are across multiple
channels.

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 9

(33664− 4958)× 4958 + 4958× (4958− 1) ≈ 167M comparisons (for titles
and descriptions respectively). In each of these comparisons, the BM25 al-
gorithm yields a score of similarity, the higher the score the closer the two
pieces of information (i.e., titles or descriptions).

3. We ranked the BM25 scores for all pairs of issues by descending order. We
removed the pairs where the BM25 scores is 0. The rest of the results were
considered as duplicate issue candidates. We intended to manually exam-
ine the correctness of each title (respectively description) pair by carefully
analyzing the whole issue reports. There are 8.1 million pairs of duplicate
issues candidates, our manual validation cannot cover all these but can only
focus on the most likely candidates. First, we narrowed down our manual
analysis scope to the top 1,000 candidates because correct duplicate cases
can hardly be observed beyond the top 1,000 candidates (in which the
highest BM25 value is 97.5, and the lowest value is 29.1) through a pre-
liminary analysis. Second, we designed a heuristic to further filter out the
pairs in which the two issue reports are not linked to each other: if Issue
A is never mentioned in Issue B (either in one of the comments, or in
the “Blocking”, “Depends On”, “See Also” fields), we considered the two
issues to be “not linked” (meaning that, in practice, developers did not
notice any relationship between the issues). To calculate the false positive
rate of this heuristic, we manually examined the top 50 and 100 other ran-
domly selected candidates, and found that only two correct duplicate pairs
were misclassified by the “unlinked” heuristic. As a result, 137 candidates
survived this step. Our manual validation was then performed on these
candidates.

4. Since we separately performed Steps 2 and 3 on the issue titles and de-
scriptions, we combined the results and removed redundancies. We also
removed the pairs where an issue is a clone of another one. From the ob-
tained results, we only keep the duplicate pairs where the duplicate issue
were opened or resolved after the original patch had been uplifted.

Compared to any fully automated approach, our approach can achieve a
very high precision because all of the reported duplicate issue pairs have been
carefully examined by two authors of the paper (by understanding the whole
context of the issue reports). Although we cannot guarantee a 100% recall, we
believe that our reported results covers all possible cases where the titles (re-
spectively descriptions) of a pair of issues are textually similar to each other. In
fact, text processing is the base of most aforementioned approaches. BM25 is
considered as an advanced measure of ranking similarities, which has a higher
performance than the traditional TF-IDF algorithm [41]. Some approaches,
such as [38, 41], used additional information (e.g., priority, product, and ver-
sion fields from the analyzed issue reports), but such information cannot help
to retrieve more possible candidate (i.e., it cannot increase the recall). In this
work, we only ignored the issue pairs where the titles or descriptions have no
relevance (i.e., BM25 value is 0) or have little relevance (i.e., the two issues
are not linked and the BM25 value is weak).

10 Marco Castelluccio et al.

Table 1 Developer experience and participation metrics (m1 - m5).

Metric mi Description Type and range
Developer
experience

1 Number of previous commits of the patch
developer.

Integer, from 0 to
43639.

Reviewer
experience

2 Number of previous commits of the patch
reviewer.

Integer, from 0 to
43691.

Number of
comments

3 Number of comments in the issue report. Integer, from 3 to
1359.

Comment
words

4 Average number of words in the comments
to an issue.

Integer, from 0 to
2199.

Review dura-
tion

5 Time period (in days) from a patch’s sub-
mission until its approval.

Float, from 0.0 to
around 406.67.

Table 2 Uplift process metrics (m6 - m8).

Metric mi Description Type and range
Landing delta 6 Time elapsed (in days) between when the

patch was applied to the Nightly version
and when the developer asked for approval
of an uplift. The value can be negative, as
sometimes developers request uplift before
their patch is applied to Nightly.

Float, from -41.59 to
around 153.73.

Response
delta

7 Time elapsed (in days) between when the
developer asked for approval for the uplift
and when the release manager decided (ap-
proved or rejected).

Float, from 0.0 to
around 31.23.

Release delta 8 Time elapsed (in days) between when the
developer asked for approval for the uplift
and the date of the following release.

Float, from 0.0 to
around 42.76.

Table 3 Sentiment metrics (m9 - m10).

Metric mi Description Type and range
Developer
sentiment

9 The highest negative sentiment score in the
developers’ comments on an issue.

Integer, from -5 to 0.

Owner senti-
ment

10 The highest negative sentiment score in
module owners’ comments on an issue.

Integer, from -5 to 0.

3.2.4 Mining Issue Reports

We mined several kinds of metrics from Bugzilla issue reports: information
about the review process (e.g., how long a review took, how many reviewers
inspected a patch), information about the uplift process (e.g., whether an uplift
was accepted, how long before a release manager decided to accept or reject
an uplift request), the developer assigned to an issue, and the component(s)
affected by an issue.

3.2.5 Computing Metrics

To capture the characteristics of patches that were uplifted, we computed the
22 metrics described in Tables 1 to 5. These metrics correspond to the following
five dimensions:

Developer experience and participation metrics Our rationale for computing
these metrics is that patches written or reviewed by experienced developers

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 11

Table 4 Code complexity metrics (m11 - m19).

Metric mi Description Type and range
Patch size 11 Number of lines in a patch (excluding test

patches).
Integer, from 0 to
301114.

Test patch
size

12 Number of lines in a test patch. Integer, from 0 to
127155.

Prior changed
times

13 Number of previous commits that modified
the same files that the patch is modifying.

Integer, from 0 to
114051.

LOC 14 Average lines of code in all files in a patch. Integer, from 0 to
27727.

Average cyclo-
matic

15 Average cyclomatic complexity of the func-
tions in a file.

Integer, from 0 to
128.

Number of
functions

16 Average number of files’ functions in a
patch.

Integer, from 0 to
3878.

Maximum
nesting

17 Average maximum level of nested functions
in all files in a patch.

Integer, from 0 to 13.

Comment
ratio

18 Average ratio of the lines of comments over
the total lines of code in all files in a patch.

Integer, from 0 to 99.

Module num-
ber

19 Number of modules (as defined by Mozilla
in [24]) involved by a patch.

Integer, from 0 to 76.

Table 5 Code centrality (SNA) metrics (m20 - m22).

Metric mi Description Type and range
PageRank 20 Time fraction spent to “visit” a node (i.e.,

file) in a random walk in the call graph.
Float, from 0.0 to
1158.91.

Betweenness 21 Number of classes passing through a node
among all shortest paths.

Float, from 0.0 to
6.2e+07.

Closeness 22 The average length of the shortest path be-
tween a node and all other nodes.

Float, from 0.0 to
3.21.

may have a higher chance to be accepted for uplift, and may be less fault-prone.
Long comments and long review durations may indicate the complexity of an
issue and developers’ uncertainty about it, which may explain its rejection or
fault-proneness.

Uplift process metrics We computed metrics capturing the uplift process for
the following reasons. Release managers may be more inclined to accept patches
with higher landing delta (as the more time a patch has been on the Nightly
channel, the more time it has been tested by Nightly users). Patches with
low release delta are likely to be refused uplifts, since patches that are devel-
oped closer to the date of release might pose more risk (as there is less time
to fix potential regressions). Patches with low response delta may also be re-
jected (since developers have less time to evaluate the risks associated with
the patch). Patches with low landing delta, release delta, and low response
delta may also lead to faults if uplifted.

Sentiments We computed sentiment metrics because we believe that senti-
ments can affect uplift decisions and their success rate. From each studied
issue, we extract developers’ comments to compute their sentiments. We lever-
age the sentiment mining tool, SentiStrength [22], to estimate the extent of
developers’ positive and negative sentiments toward a specific issue. As one of
the state-of-the-art sentiment mining tool, SentiStrength is easy to apply, and

12 Marco Castelluccio et al.

it has achieved a reasonable performance in prior works [22, 42]. To adapt this
tool to the software engineering context, we ignored a group of words that have
negative meanings in general but do not represent any negative sentiment in
Bugzilla discussions, e.g., bug, error, issue, regression, failure, fail, leak, crash3.
To further filter out irrelevant information from the comments, we used regu-
lar expressions to ignore hyperlinks and referred texts (i.e., lines starting with
“>”) From Marco Iis there a better way to say it than ”referred texts”?J . In addition to
developers’ sentiments, we also computed module owners’ sentiments.

Code Complexity Previous works, such as [18], have shown that complex code
is likely to introduce faults. We calculated code complexity metrics to under-
stand how uplifting decisions and their success are affected by the complexity
of the uplifted patches. We extracted the files changed in each patch and use
the static code analysis tool Understand [33] to calculate the following com-
plexity metrics on the files: lines of code (LOC), average cyclomatic complexity,
number of functions, maximum nesting, and ratio of the comment lines over
the total code lines.

Code centrality (SNA) metrics Kim et al. [18] observed that functions close to
the centre of a call graph are likely to experience more faults. Hence, we com-
puted metrics capturing the centrality of functions involved in uplifted patches
and uplifted patch candidates. We used the network analysis tool, igraph [8], in
combination to Understand [33], as in [3], to compute the following Social Net-
work Analysis (SNA) metrics: PageRank, betweenness, and closeness. When
computing complexity and SNA metrics, we only considered the C/C++ code
since Firefox contains 86% of C/C++ code. Computing code complexity and
SNA metrics is a very time-consuming task. Instead of computing the metrics
for each patch, we computed metrics by releases and map a given patch to its
latest major release as in our previous work [3]. To make the metric results
as precise as possible, we considered all major releases from Firefox 32.0 un-
til Firefox 48.0, which cover the system’s history from September 2014 until
August 2016.

4 Case Study Results

This section presents and discusses the results of our five research questions.
For each question, we discuss the motivation, the approach designed to answer
the question, and the findings. To get a deeper insight of the patch uplift pro-
cess, we perform both quantitative and qualitative analyses for each research
question.

3 Please refer to our data repository to see the whole list of ignored words:
https://github.com/swatlab/uplift-analysis

https://github.com/swatlab/uplift-analysis

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 13

RQ1: What are the characteristics of patches that are uplifted?

Motivation. This question aims to understand the characteristics of patches
that are uplifted. We are particularly interested in understanding what dif-
ferentiates patch uplifts among different channels. Although Mozilla has pub-
lished rules to guide the patch uplift process [25], it is unclear if and how
these rules are enforced in practice. The answer to this research question can
help discover hidden factors that affect the uplift process, and help software
practitioners make this process more predictable.

1) Quantitative Analysis
Approach. Using the metrics from Tables 1 to 5, we statistically compared

22 numerical characteristics of patch uplift candidates that were accepted and
those that were rejected. As Mozilla release managers take a whole issue report
into account during the uplift process (see Section 3.1), we calculated the
average values of the code complexity and SNA metrics for all patches in a
subject issue report.

For each of the 22 metrics mi, we formulated the following null hypothesis:
H01

i : there is no difference between the values of mi for patch uplift candidates
that were accepted and those that were rejected, where i ∈ {1, . . . , 22}

We used the Mann-Whitney U test [13] to accept or reject these hypotheses.
The Mann-Whitney U test is a non-parametric statistical test that measures
whether two independent distributions have equally large values. We used a
95% confidence level (i.e., α = 0.05) to accept or reject the hypotheses. Since
we performed more than one comparison on the same dataset, to reduce the
chances of obtaining false-positive results, we used Bonferroni correction [10]
to control the familywise error rate. Concretely, we calculated the adjusted
p-value, which is multiplied by the number of comparisons. Whenever we ob-
tained statistically significant differences between metric values, we computed
the Cliff’s Delta effect size [6] to measure the magnitude of the difference.
Given a result of the Cliff’s Delta, d, we use the following thresholds to de-
cide its magnitude: |d| < 0.147 “negligible”, |d| < 0.33 “small”, |d| < 0.474
“medium”, otherwise “large” [31]. In the following, we report only the metrics
for which there is a statistically significant difference between accepted and
rejected patch uplift candidates.

Results. Table 6 summarizes differences between the characteristics of
patches that were accepted for an uplift and those that were rejected. We show
the median value of accepted and rejected uplifts for each metric, as well as the
p-value of the Mann Whitney U test and the effect size. For all three channels,
rejected uplifts have longer response delta (m7) than accepted uplifts. We
attribute this outcome to the high complexity of the rejected patches, which
required longer time for risk assessment. We summarize the different results
among the channels as follows:

– Aurora: We observed that rejected uplift requests have significantly higher
landing delta; this might imply that the rejected patches are landing at
the end of the Aurora cycle, and so have less time for stabilization. Also,

14 Marco Castelluccio et al.

Table 6 Accepted vs. rejected patch uplift candidates.

Channel Metric Accepted Rejected p-value Effect size

Aurora Comment ratio 0.1 0.2 0.03 small
Landing delta 0.4 3.0 0.02 small
Response delta 0.9 2.4 1.80e-05 medium

Beta LOC 529.0 1,046.8 9.27e-04 small
Cyclomatic 2.0 3.0 0.04 negligible
of functions 20.0 35.2 9.62e-04 small
Comment ratio 0.1 0.2 8.86e-05 small
Betweenness 2,789.0 20,586.3 0.01 negligible
PageRank 1.4 1.7 0.01 negligible
Max. nesting 2.3 3.0 7.72e-03 negligible
Module number 1.0 1.0 7.13e-03 negligible
Response delta 0.7 1.0 6.28e-04 small

Release Response delta 0.02 3.1 1.39e-12 large

rejected uplift requests have higher ratio of comment in the source code,
although we expected that a higher comment ratio might help release man-
agers understand the code. A high comment ratio could also indicate a
high code complexity. Release managers may hesitate to release patches
with complex code ahead of schedule.

– Beta: Compared to accepted patches, rejected patches tend to have higher
code complexity in terms of LOC and number of functions, as well as
higher SNA values in terms of PageRank. This result is expected, because
we assume that complex code and code connected with many other classes
is less likely to be accepted for urgent releases. As in the Aurora channel,
rejected patches also contain code with higher ratio of comment. Although
accepted and rejected patches have significant differences on some other
metrics such as cyclomatic complexity, the magnitude of these differences
is negligible.

According to the results, we can only reject H01
7 , meaning that the

response delta can significantly affect the decision to uplift a patch
or not. The impact of other metrics, including code complexity and
SNA metrics, is channel dependent.

We quantified the acceptance rate of uplift requests for different compo-
nents and observed that certain components enjoy a 100% acceptance rate
(perhaps because they rarely experienced faults); while other components have
lower acceptance rates (perhaps because they are inherently more complex,
e.g., the implementation of JavaScript, or because release managers have had
bad experience with some of them). This difference between the acceptance
rates of components is more pronounced in the Release channel. Some compo-
nents that are involved in a large number of uplifts (e.g., Audio/Video, Graph-
ics, and DOM components) also have the lowest acceptance rate. Perhaps de-
velopers of those components tend to ask for uplifts more often, prompting
a negative reaction from release managers who may feel that they take too
many risks.

2) Qualitative Analysis
Since we did not observe significant structural differences between the code

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 15

Table 7 Uplift reasons and descriptions (abbreviations are shown in parentheses).

Reason Description
Security Security vulnerability exists in the code.
Crash Program unexpectedly stops running.
Hang Program keeps running but without response.
Performance degra-
dation (perf)

Functionalities are correct but response is slow or delayed.

Incorrect rendering
(rendering)

Components or video cannot be correctly rendered.

Wrong functionality
(func)

Incorrect functionalities besides rendering issues.

Web incompatibility
(web comp)

Program does not work correctly for a major website or
many websites due to incompatible APIs or libraries, or a
functionality, which was removed on purpose, but is still
used in the wild.

Add-on or plug-
in incompatibility
(addon comp)

Program does not work correctly for a major add-on/plug-
in or many add-ons/plug-ins due to incompatible APIs or
libraries, or a functionality, which was removed on pur-
pose, but is still used in the wild.

Compile Compiling errors.
Feature Introduce or remove features, including support adding.
Improvement (im-
prove)

Minor functional or aesthetical improvement.

Test-only problem
(test)

Errors that only break tests.

Other Other uplift reasons, e.g., data corruption and license in-
compatibility.

of patch uplift candidates that were rejected and those that were accepted,
we conducted a qualitative study to identify and compare the reasons behind
successful and failed patch uplift requests.

Approach. From 2,384 uplifted issues in the Beta channel and 231 uplifted
issues in the Release channel, we randomly chose respectively 459 and 154
issues as our samples (which correspond to a confidence level of 95% and a
confidence interval of 5%). Inspired by Tan et al.’s work [39], we classified the
uplift reasons into 14 categories based on their (potential) impact and detected
fault types. Some of Tan et al.’s categories are too broad, such as incorrect
functionality. We broke them into more detailed uplift reasons, e.g., incorrect
functionality is split to incorrect rendering and (other) wrong functionality.
Some of Tan et al.’s categories, such as data corruption, are with too few
occurrences. We combined them into the “other” category. Table 7 shows the
uplift reasons used in our classification. We performed a card sorting on each
of the sampled issues. By studying the issue report, the first and the second
authors of the paper individually classified each issue into one or multiple uplift
reasons (some uplift may be due to multiple reasons). Then we compared their
classifications and resolved conflicts through discussions. We discussed each
conflict until an agreement was reached.

To connect uplift reasons with the risk of regression, we will show the
distribution of the faulty uplifts for each uplift reason.

Moreover, to identify organizational factors that play a role in patch uplift
decisions, we interviewed three of the current five Mozilla release managers
(the other remaining two were new to the role) one at a time (to avoid them
influencing each other), asking them the following questions:

16 Marco Castelluccio et al.

0

50

100

fun
c

cra
sh

se
cu
rity

we
b_
co
mp

fea
tur
e

ren
de
rin
g

im
pro
ve pe

rf
oth
er

ha
ng

co
mp
ile tes

t

ad
do
n_
co
mp

Clean Faulty

Fig. 3 Distribution of uplift reasons in Beta.

0

20

40

60

fun
c

cra
sh

we
b_
co
mp

se
cu
rity

fea
tur
e

pe
rf

ren
de
rin
g

co
mp
ile

oth
er

ha
ng tes

t

ad
do
n_
co
mp

Clean Faulty

Fig. 4 Distribution of uplift reasons in Release.

1. Which factors do you take into account when deciding about an uplift?
2. Are there differences in how you handle uplifts in different channels, and

what are the differences?
3. How do you decide which developers you can trust?

After this first more structured interview with the questions above, we per-
formed a semi-structured one, showing the results of our quantitative analysis
to the release managers and asking them for their feedback.

The questions of both the interviews were open-ended, so we had to per-
form an analysis to extrapolate interesting elements and to group together
similar ones (e.g., if an interviewee mentioned “a really important issue re-
ported multiple times” as being one of the factors and another mentioned “a
bug affecting many users”, we considered these factors to be the same and
grouped them together in “Importance of the issue”).

Results. Figures 3 and 4 show the distribution of the uplift reasons, as well
as the distribution of fault-inducing uplifts and clean uplifts for each reason.
We observed that, in the Beta channel, most patches are uplifted because of
a wrong functionality, crash, security vulnerability, incompatibility with some
major websites, or to introduce/remove a feature. Most regressions are intro-

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 17

duced by the uplifts that resolved wrong functionalities, crash, and security
issues. For some uplift reasons, including improvement, resolving add-on/plug-
in incompatibility and compiling errors, few patches lead to faults in our stud-
ied sample. However, a high percentage of patches resolving performance and
rendering problems introduced new regressions.

In the Release channel, we observed the same top five uplift reasons. Com-
pared to the Beta channel, there are fewer regressions; implying that these
uplifted patches may have been more carefully scrutinized, the rules for ap-
proval on the Release channel being more strict. The fault-inducing patches
only concentrated on five uplift categories: crash, hang, security, performance
degradation, and incorrect rendering. Especially, most patches for incorrect
rendering lead to future faults. These results suggest that, although develop-
ers prudently uplift patches in the Release channel, they still need to carefully
review patches belonging to the aforementioned categories in order to prevent
delivering faults to users.

Through the interview, we learn that release managers take into account
several factors when deciding whether to approve or reject a patch uplift re-
quest.

1. Importance of the issue. This is measured through the impact that rejecting
the uplift would have on users.

2. Risk associated with the patch. Release managers share the same view
on the risks. They generally trust developers’ words, unless they have had
bad experiences with them (e.g., developers who caused regressions and did
not fix them); they evaluate the risk of the patch by looking at its size and
complexity, the presence/absence of automated tests, the reviewers of the
patch. In case of doubts, release managers consult other release managers
or engineering managers to get a clearer picture.

3. Timing of the uplift in the Aurora/Beta cycle. They tend to trust more
patches that have been in Nightly for some time and patches that are far
from the next release date. They almost always accept uplifts requested
during the first weeks of the Aurora cycle.

4. Verification of the patch. In particular for more stable channels, they make
sure that the patch has been verified to actually fix the problems it was
supposed to fix. If needed, they ask QA to manually verify the patch. If it
is a patch that fixes a Nightly crash, before uplifting the patch to Aurora,
they will verify if users are no longer reporting the crash.

They remarked that the uplift bar gets higher as they are getting closer to
release. After the middle point of the Beta cycle, they only accept patches fix-
ing high security issues, high-volume crashes, severe recent regressions, severe
performance issues or memory leaks.

We presented the release managers with the results of our quantitative and
qualitative analysis and collected the following observations.
They found that the response delta information is interesting. After
thinking about it, they all gave us similar replies. When they are evaluating a
complex issue and are still undecided, they will not make the call immediately.

18 Marco Castelluccio et al.

One release manager said that “when I reject something, I won’t make the call
immediately. I will think about it before doing it, in case I change my mind or
new facts are coming in the equation”.
Regarding the landing delta, they were surprised, as they thought they
were more likely to accept patches with a higher landing delta (that is, patches
that have been in Nightly for longer). They have also said that they are almost
always accepting patches during the first four weeks of the Aurora cycle, which
would explain this discrepancy (as those patches have a small landing delta).

The interviewed release managers also told us that they take into account
the fault-proneness of components when making uplift decisions; which is in
line with what we found (some components have a smaller acceptance rate).
One release manager told us that “some components always come out as caus-
ing the most regressions, e.g., graphics layers, DOM”. Regarding the trust in
developers, they all mentioned the assessment of risk as one of the first factors.
One release manager explained that “when they seem really overconfident or
aren’t telling me the whole story I lose some trust”, another one stated that
“some developers are taking a lot of risks, some other less and are super reac-
tive to fix potential fallout”. This finding is consistent with the uplift criteria
followed at Facebook [47], where release managers tend to trust developers
who introduced less regressions in the past.

Regarding uplift reasons, release managers were not surprised that test and
compile changes are less frequent than others. They argued that these kinds
of changes are really hard to move from the Nightly channel to a stabilization
channel (build or test failures, unless they happen on really particular con-
figurations, are noticed as soon as a patch is applied, since tests are run for
every changeset). For the same reasons, they were not surprised that the uplift
regressions are rarely compile-related.

Release managers argued that the information about the distribution of
uplift reasons is useful for their future decision-making. They were initially
surprised to see that crash and security-related uplifts often caused regres-
sions, but they thought that the urgency of those fixes might degrade their
quality. They were also interested in the results regarding the categories where
a high proportion of uplift patches caused regressions (e.g., performance up-
lifts). They said that they will start to take this information into account
when deciding about uplifts, and will be more careful with the uplifts in those
categories.

RQ2: How effective are uplift operations?

Motivation. Previous studies showed that some issues cannot be effectively
fixed by one patch, but need additional fixing efforts. These issues can be
detected by seeking reopened [21], cloned [40], duplicate, or resolved by
multiple patches [28] (which also includes backouts made by tree sheriffs,
[27]) issues. In this research question, we want to examine whether it happens
that patch uplift operations require multiple attempts (we refer to such uplifts

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 19

Table 8 Root causes of the ineffective uplifts.

Category Description
Not fixed The issue was completely not fixed, i.e., the uplifted

patch did not have any effect.
Partially fixed The issue was only partially fixed, i.e., the uplifted

patch had an effect but did not completely resolve the
problem.

Need more QA The uplifted patch had not gone through enough man-
ual verification.

Need more tests There were no tests added with the uplifted patch,
but they were required.

Diagnostics An uplift was made to gather more data on a problem,
then another uplift was made to actually fix it.

Regressions The uplifted patch caused other defects.
Test failure The uplifted patch did not pass a certain test.
Build failure The uplifted patch caused a build error.
Other Other reasons, e.g., an issue was fixed by an uplift,

but then appeared again because of another patch; or
the patch depended on other patches to be uplifted
first.

as “ineffective uplifts”). Since such outcome is not desirable, it would be useful
to help developers identify the characteristics of such patch uplifts, so that
they can take the necessary steps to avoid reoccurrences of issues addressed
by uplift operations.

Approach. To identify issues that were reopened, we used the REOPENED

Bugzilla resolution type. To identify issues that were cloned, we used a regular
expression to match the following pattern, which Bugzilla adds automatically
when a user clones a bug.

+++ This bug was initially created as a clone of Bug #ISSUE ID +++

To identify issues that were fixed by more than one uplift, we used regular
expressions to detect uplifts in issue reports (see Section 3.1), and initially
marked issues where at least two uplifts occurred (at a distance of at least
three days between them). We chose three days because the distance between
two beta builds is three days. A shorter time would likely have caught simple
follow-up fixes that we are not interested in. A longer time would likely have
missed some cases of multiple uplifts.

From the obtained results, we removed the issues that were reopened or
cloned before their corresponding patches had been uplifted. We also removed
the issues with multiple uplifted patches, which were actually uplifted together
(or at the same time) or where one of the multiple uplifts was a simple test-
only fix (identified by a=test-only in the commit message). From the user
side, these issues were resolved by only one shot.

To identify issues duplicate of a previous issue fixed by patch uplift, we
used the approach described in Section 3.2.3.

For each identified and verified issue that was not effectively fixed by an
uplift, two of the authors independently card sorted the root causes of the inef-
fective uplift into one or multiple categories. They first defined categories sep-
arately, and then merged similar categories into one. Next, they standardized
the category names as shown in Table 8. Finally, they used these standardized

20 Marco Castelluccio et al.

Table 9 Number of ineffective uplifts in the three channels.

Aurora Beta Release Unique count

Reopened 70 49 10 77
Cloned 28 16 3 32
Duplicate created
after an uplift

15 10 2 16

Duplicate resolved
after an uplift

5 3 2 7

Resolved by mul-
tiple uplifts

50 42 3 78

categories to compare their classification differences and resolve conflicts until
reaching an agreement for each of the issues.

Results. Table 9 shows the number of ineffective uplifts detected from the
three development channels. Since some patches were uplifted into multiple
channels, the table also shows the unique number of the ineffectively uplifted
patches in a specific manner (e.g., reopened, cloned, or duplicate). Figure 5
depicts the root causes of the ineffective uplifts and shows the prevalence of
each root cause. In this figure, if the patch of an issue was uplifted to multiple
channels, we only counted it once. In general, 196 out of the 4,958 (4%)
studied issues were not effectively fixed by one patch uplift and
required additional efforts. In previous studies, Park et al. [28] and An et
al. [4] respectively detected 32.8% and 23.8% general Mozilla issues (in different
time periods) that were resolved by multiple patches. Shihab et al. [34] detected
6.5% to 26% reopened issues from Eclipse, Apache HTTP, and OpenOffice.
Compared to these results, uplifted patches are more likely to fix a problem
in one shot than other patches, even though we analyzed ineffective uplifted
patches from different angles, including reopened, cloned, duplicate issues, and
issues fixed by multiple uplifts. This implies that uplifted patches have a better
general quality than other patches.

“The original uplifted patches did not completely fix the prob-
lem” is the most frequent root cause behind the issues that were
ineffectively fixed and were later reopened, cloned, or duplicate. An
example of such case is issue #1156182; the original uplifted patch of issue
#11561824 only fixed the crash problem on Windows. The issue was reopened
to further fix crashes on Linux.

“Leading to regressions” is another important frequent root cause
of the issues that were reopened, cloned, and were resolved by mul-
tiple uplifts. An example of such case is issue #1044975; after uplifting and
landing a patch to the Aurora and Release channels to fix crashes of issue
#10449755, developers noticed an increase of crashes with another stack trace
in the field. They had to uplift another patch to address the regressions.

In addition, among the ineffective uplifts, 27.5% of the issues were reopened
after patch uplifts because these patches did not resolve the issues at all. 18.1%

4 https://bugzilla.mozilla.org/show_bug.cgi?id=1156182
5 https://bugzilla.mozilla.org/show_bug.cgi?id=1044975

https://bugzilla.mozilla.org/show_bug.cgi?id=1156182
https://bugzilla.mozilla.org/show_bug.cgi?id=1044975

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 21

diagnostics: 1.2%
need more tests: 5.0%
need more QA: 1.2%

regressions: 20.0%
other: 3.8%

not fixed: 27.5%

test failure: 3.8%

partially fixed: 37.5%

(a) Reopened

diagnostics: 3.1%
not fixed: 3.1%

other: 9.4%

partially fixed: 71.9%
regressions: 12.5%

(b) Cloned

not fixed: 12.5%

other: 6.2%

partially fixed: 75.0%
regressions: 6.2%

(c) Duplicate created after an uplift

not fixed: 14.3%

partially fixed: 85.7%

(d) Duplicate resolved after an uplift

build failures: 6.0%
diagnostics: 4.3%

not fixed: 2.6%
other: 19.8%need more tests: 0.9%

partially fixed: 10.3%

regressions: 37.9%
test failure: 18.1%

(e) Resolved by multiple uplifts

Fig. 5 Root causes of the ineffective uplifts.

of the issues were resolved by multiple uplifts because their first uplifted patch
did not pass a test case. Test and build failures happen because the patch from
the Nightly version is applied to an earlier version (Beta or Aurora), so the rest
of the code might be different. In the current workflow, the uplift is published
only after the uplift is accepted. In other words, build or test failures can only
be detected after an uplift is approved. If a developer does not fix a problem
quickly enough, the uplift might be published later than it could have, thus
missing one or more Beta builds (which are made twice a week), which means
reducing the time dedicated to manual testing. In the data we have collected,
build or test failures caused on average around four days lost on Aurora and
around three days lost on Beta. This means loosing four days of testing on
Aurora, and almost one week of testing on Beta (since there are only two Beta
builds per week). We suggest that Mozilla performs “uplift simulations”, i.e.,
notifying developers whether their patch causes build or test failures as soon
as they request an uplift, instead of after the uplift is approved.

Moreover, we observed that 9 out of the 77 reopened issues did not com-
pletely get resolved, which were further filed as cloned or duplicate issues. For
example, issue #11540036 was created due to crashes in the drawing method
DrawingContext::FillRectangle. After uplifting a patch to the Aurora and
Release channels, developers still observed a high volume of crashes with the
same signature. To address the missing edge cases of these crashes, developers

6 https://bugzilla.mozilla.org/show_bug.cgi?id=1154003

https://bugzilla.mozilla.org/show_bug.cgi?id=1154003

22 Marco Castelluccio et al.

cloned the issue into issue #11625207. This finding inspired us to investigate
whether the cloned and duplicate issues were resolved in the same version as
their original issues or resolved in a later version. We found that 23 out of the
54 (32+15+7) cloned or duplicate issues were resolved in the same version as
their original issues, and the other 32 issues were resolved in a later version.

In this study, we only target for closed issues, but during our manual anal-
ysis, we observed that some issues fixed by uplifted patches have not been
eventually closed. For example, issue #12973908 was created as a follow-up to
the crashes fixed in issue #12801109. Issue #1297390 has not been closed be-
cause the crash volume decreased again to a relatively low level. The priority
of this issue were adjusted to P3, i.e., would like to fix, but waiting for re-
sources [23]. Although it would be interesting to investigate how many issues
fixed by ineffective uplifts have been “completely and eventually” resolved,
we can hardly get an exact answer because first, our subject dataset is dated
from September 2014 to August 2016. Answering this question is beyond the
scope of our study. Second, developers and testers can hardly know whether
the most recent patch has covered all possible aspects to fix a certain issue, in
other words, a “fixed” problem may come back again in the future. A lesson
from this finding is that some issues are more difficult to get fixed than others.
If an issue has recurred in the field, a proper follow-up is required even after
the issue has been closed.

Regarding the differences of the ineffective uplift among channels, we ob-
served that 153 out of the 4,368 (3.5%) Aurora uplifts, 112 out of the 2,614
(4.3%) Beta uplifts, and 16 out of the 285 (5.6%) Release uplifts were in-
effective. Although the strictness of the uplift rules increases from Aurora,
Beta, and to Release, the prevalence of ineffective uplifts does not decrease
accordingly in these channels. The percentages vary among different kinds of
ineffective uplifts, in particular “not fixed” uplifts account for 0.5% in Aurora,
0.9% in Beta, and 2.5% in Release. A possible reason could be that patches
uplifted to the Release channel are aimed at more critical problems, which
might be harder to fix. We looked in more detail at the “not fixed” cases
in Release. It turns out that these uplifts indeed often fix very hard issues
that occur in not-easily reproducible scenarios (even though they affect many
users), thus developers are forced to fumble around in the dark, attempting
tentative fixes that sometimes do not work at all. However, we still suggest
that release managers enhance the review effort on the Release uplifts, be-
cause these patches are targeted to the most stabilized version and most users
of the product. Releasing updates to them without fixing the issues might be
counterproductive.

According to our results, we suggest that developers and testers should
carefully inspect whether a patch has completely resolved an issue and verify
whether the patch has covered all possible scenarios of the issue. They also need

7 https://bugzilla.mozilla.org/show_bug.cgi?id=1162520
8 https://bugzilla.mozilla.org/show_bug.cgi?id=1297390
9 https://bugzilla.mozilla.org/show_bug.cgi?id=1280110

https://bugzilla.mozilla.org/show_bug.cgi?id=1162520
https://bugzilla.mozilla.org/show_bug.cgi?id=1297390
https://bugzilla.mozilla.org/show_bug.cgi?id=1280110

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 23

to examine whether the patch would lead to new problems (i.e., regressions)
before requesting for uplift. Some ineffective uplifts (such as those due to test
and build failures) can be prevented by performing uplift simulations.

We have shown the results to the release managers, who observed that
many times in order to mitigate risk and especially for very urgent issues, they
actually request developers to either implement a workaround or a partial fix,
postponing a full fix (and potential refactorings) for a subsequent release.

RQ3: What are the characteristics of uplifted patches that introduced faults
in the system?

Motivation. In RQ2, we studied ineffective uplifts, i.e., uplifted patches that
need additional fixing efforts. We observed that leading to regressions is one of
the reasons of these ineffective uplifts. In this research question, we focus on
the uplifted patches that introduced new regressions. These patches not only
decrease the users-perceived software quality, but also increase development
costs, since developers, testers and release managers have to rework the faulty
patches. In Firefox’ Aurora, Beta and Release channels, we found respectively
8.8%, 8.3%, and 7.9% of uplifted patches that introduced regressions in the
system. Understanding the characteristics of these “fault-inducing uplifts” can
help software organizations focus their QA and code review efforts on specific
kinds of uplifts to prevent users’ frustration.

1) Quantitative Analysis
Approach. To discover all possible fault-inducing uplifts, we applied the

SZZ algorithm (described in Section 3.2.2) on all fault-fixing changes to iden-
tify uplifted patches that introduced a fault in the system. Next, we classified
the uplifted patches into two groups: fault-inducing uplifts and clean uplifts.
We used the 22 metrics listed in Tables 1 to 5 to assess the differences between
these two groups. For each (mi) metric, we tested the following hypothesis:

H02
i : there is no difference between the values of mi for uplifted patches

that introduced a fault in the system and those that did not.
Similar to RQ1, we used the Mann-Whitney U test and Cliff’s Delta effect

size to accept or reject the hypotheses, and assessed the magnitude of the
differences between fault-inducing uplifts and clean uplifts. We also tested the
hypotheses for all three channels.

Results. Table 10 summarizes differences between the characteristics of
uplifted patches that introduced a fault in the system and those that did
not. We observed that fault-inducing uplifts have significantly larger patch
size (m11) than clean ones, across all three channels. The effect size of the
difference is large. This implies that patches with larger modifications are
more likely to introduce a regression if uplifted. We observed the following on
the different channels:

– On Aurora and Beta channels, fault-inducing uplifts tend to have more
complex code in terms of LOC, cyclomatic complexity, number of func-
tions, and number of modules. These patches often contain classes that are

24 Marco Castelluccio et al.

Table 10 Fault-inducing Uplifts vs. Clean uplifts.

Channel Metric Faulty Clean p-value Effect size

Aurora Patch size 155.0 34.0 5.59e-65 large
Prior changes 362.5 164.0 3.80e-10 small
LOC 903.6 457.4 2.23e-06 small
Cyclomatic 2.5 2.0 1.08e-06 small
of functions 34.3 17.0 2.25e-06 small
Max. nesting 2.7 2.0 5.14e-04 negligible
Comment ratio 0.2 0.1 4.00e-15 small
Module number 2.0 1.0 2.99e-24 small
Closeness 1.5 1.2 2.78e-13 small
Betweenness 45,221.9 880.7 2.65e-14 small
PageRank 1.7 1.4 1.95e-15 small
of comments 26.0 20.0 1.76e-09 small
Developer exp. 28.5 10.0 1.19e-18 small
Reviewer exp. 9.0 2.0 6.63e-09 small
Comment words 10.0 2.0 9.08e-07 small
Developer senti. -3 -3 8.92e-04 negligible
Owner sentiment -2 -1 1.66e-04 negligible

Beta Patch size 141.0 32.0 6.44e-33 large
Prior changes 268.0 156.5 1.02e-03 small
LOC 895.5 476.3 1.66e-03 small
Cyclomatic 2.5 2.0 3.69e-03 small
of functions 37.0 18.0 3.13e-03 small
Max. nesting 2.7 2.2 0.01 negligible
Comment ratio 0.2 0.1 4.61e-05 small
Module number 2.0 1.0 7.45e-12 small
Closeness 1.6 1.2 2.87e-07 small
Betweenness 35,661.7 1,327.8 6.00e-08 small
PageRank 1.7 1.4 1.08e-06 small
of comments 28.0 22.0 1.18e-04 small
Comment words 8.0 3.0 0.04 negligible
Developer exp. 29.0 10.0 1.33e-08 small
Reviewer exp. 10.0 2.0 3.35e-05 small
Owner sentiment -2 -1 4.14e-03 small

Release Patch size 108.0 27.0 2.07e-03 large

connected to many other classes, in terms of closeness, betweenness and
PageRank. Fault-inducing uplifts also tend to have higher comment ratios
and tend to change files that were changed more frequently. Interestingly,
fault-inducing uplifts are frequently submitted by developers or reviewers
with high experience. Fault-inducing uplifts also have a larger amount of
comments than clean uplifts. A large number of comments may be a sign
that developers are struggling with the patch, which may explain the high
fault-proneness. Although fault-inducing uplifts and clean uplifts also dis-
play other significant differences (as shown in Table 10), the magnitude of
these differences is negligible.

– For the Release channel, we do not observe a significant difference between
fault-inducing uplifts and clean uplifts for the above metrics.

Overall, we rejected H02
11 , i.e., fault-inducing uplifts have larger

patch size than clean uplifts. Release managers should pay attention
to large patches and reviewers should scrutinize them carefully. Al-
though the effect of other characteristics is channel dependent, in
Aurora and Beta, we observed that patches with high complexity
and centrality tend to lead to faults. Uplift requests submitted by

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 25

Table 11 Fault reasons and descriptions.

Reason Description
Memory Memory errors, including memory leak, overflow, null

pointer dereference, dangling pointer, double free, unini-
tialized memory read, and incorrect memory allocation.

Semantic Semantic errors, including incorrect control flow, missing
functionality, missing cases of a functionality, missing fea-
ture, incorrect exception handling, and incorrect process-
ing of equations and expressions.

Third-party Errors due to incompatibility of drivers, plug-ins or add-
ons.

Concurrency Synchronization problems between multiple threads or
processes, e.g., incorrect mutex usage.

Compile Compile-time errors.
Other Other errors.

experienced developers and reviewers also tend to lead to regres-
sions.

Similar to RQ1, we examined patch uplifts per component, and observed
that patch uplifts affecting certain components (e.g., Graphics component) are
more likely to cause regressions than others. Some of the components with the
highest fault-inducing rates also have a low approval rate; probably because
the release managers were acting based on their previous experiences with
those components (for example, the Web Audio component). Components like
the Audio/Video, which are involved in multiple patch uplift operations, also
have the highest fault-inducing rates; these components would be inherently
more prone to faults because of their complexity, or technical debt.

We made a similar observation regarding developers’ submitting uplift re-
quests. Many developers who submitted multiple uplift requests appear in the
list of developers with high fault-inducing rates; perhaps, by uplifting more
patches, they are taking more risks.

2) Qualitative Analysis
To understand the root cause of faults in uplifted patches, we conducted a
qualitative study.

Approach. We manually examined uplifted patches (from the samples
selected in RQ1) that introduced faults, and classified the reasons behind the
faults. Inspired by the work of Tan et al [39], we defined seven possible root
causes for uplift faults (as shown in Table 11). We identified respectively 132
and 17 fault-inducing uplifts from the Beta and Release samples chosen in
RQ1, and performed a card sorting to classify each of the faults into one or
multiple causes. As in RQ1, the first and the second authors individually read
the issue reports and their fault-fixing patches to understand the root causes
of the faults (i.e., the reason why their corresponding uplifted patches caused
the faults) and classified these root causes along our seven categories. Similar
to RQ1, disagreements were resolved through discussions.

We also interviewed release managers, asking them the following question:
What are the characteristics of fault-inducing patches that you are not cur-
rently taking enough into account but could be considered in the future?

26 Marco Castelluccio et al.

0

25

50

75

100

semantic memory third−party concurrency compile other

Beta Release

Fig. 6 Reasons of fault-inducing uplifts.

Results. Figure 6 depicts the distribution of the reasons why fault-inducing
uplift introduced regressions. In both channels, semantic and memory-related
errors are dominant root causes of the uplift regressions. With a detailed check
on the patches, we found that many memory errors are due to null pointer
dereference and memory leak. In addition, incompatibility of plug-ins and
drivers also cause uplift regressions in both channels. Concurrency issues are
ranked as a popular cause for Beta’s uplift regressions, but we did not find any
example of this category in the Release channel. In general, our results suggest
that, when uplifting a patch, release managers need to carefully check
for potential faults on the program’s semantic meaning, memory op-
erations, synchronization, and third-party extension’s compatibility.

In the interview, all the release managers agreed that it would be
beneficial for them to have more detailed information about the
complexity of the patches they are asked to evaluate and more in-
formation about the history of the components involved in these
patches. This resonates with our findings. Release managers were surprised
to see that fault-inducing patches were more likely to be written by more expe-
rienced developers and reviewed by more experienced reviewers. They guessed
that these developers/reviewers are assigned to more complex tasks with more
complex solutions. A release manager told us that “if you call in the big guns,
then it’s a warning sign”.

The fault categorization was also interesting for the release managers, who
told us that Mozilla is about to employ more static analysis tools (e.g., Cover-
ity [7]) and to move some of their code from C++ to a safer language (e.g.,
Rust). It is promising for them to see how many memory and concurrency
faults can be avoided by using these techniques, and how many semantic and
third-party faults can be reduced by enhancing code review or testing efforts.

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 27

Table 12 Categories of uplift reasons and regression impact. The severity is ranked by
descending order (1 represents the most severe reason; while 6 represents the least severe
reason).

Reason Description Severity
Security Same as security in Table 7. 1
Crash crash + hang. 2
Broken functionality
(func)

func + web compat + addon compat + render-
ing.

3

Performance degra-
dation (perf)

Same as perf in Table 7. 4

Improvement or new
feature (improve)

improve + feature. 5

Compile or test
problem (compile)

compile + test. 6

Other Same as other in Table 7. 6

RQ4: Are regressions caused by uplift more severe than the bugs that were
fixed with the uplift?

Motivation. In RQ3, we found that some uplift patches lead to regressions.
For these patches, following an observation from the release managers, we are
curious to compare their potential impact with the impact of the regression
they lead to. We would suggest developers to carefully uplift certain kinds of
patches if the patches have often caused more severe problems than what they
intended to address.

Approach. We performed a manual analysis on the uplifted patches that were
examined in RQ3. For each of these patches, two of the authors independently
identified: 1) the problem the patch aims to address (noted as “original prob-
lem”), and 2) the impact of the regression the patch caused (noted as “re-
gression problem”). To facilitate the comparison on the severity level between
the original problem and the regression problem, we merged some of the cat-
egories (which have the same severity) defined in Table 7 as in Table 12. We
also ranked the severity among different uplifted reasons (or regressions).

In some cases, the uplift and regression problems belong to the same cate-
gory, but they affect users to a different extent. For example, issue #105979710

(which was uplifted to address a hang problem) caused a regression as issue
#123978911 (which is a crash problem). Although crash and hang are consid-
ered to have the same level of severity, the first issue only happened during
test runs, whereas the second one can be reproduced by users. To reduce any
biases in the above rule, we also carefully examined the severity of the issues
that belong to different categories. For example, issue #107519912 (which was
uplifted to add a mock GMP plugin for testing) caused issue #116091413

(which is a crash). Although the latter is a crash, it only affects the plugin

10 https://bugzilla.mozilla.org/show_bug.cgi?id=1059797
11 https://bugzilla.mozilla.org/show_bug.cgi?id=1239789
12 https://bugzilla.mozilla.org/show_bug.cgi?id=1075199
13 https://bugzilla.mozilla.org/show_bug.cgi?id=1160914

https://bugzilla.mozilla.org/show_bug.cgi?id=1059797
https://bugzilla.mozilla.org/show_bug.cgi?id=1239789
https://bugzilla.mozilla.org/show_bug.cgi?id=1075199
https://bugzilla.mozilla.org/show_bug.cgi?id=1160914

28 Marco Castelluccio et al.

more: 37.5%

same: 17.0%

less: 45.5%

(a) Beta channel

same: 33.3%

less: 66.7%

(b) Release channel

Fig. 7 Whether the regression an uplift caused is more severe than the problem the uplift
aims to address.

Table 13 The frequency and probability of a regression that an uplift in the Beta channel
can lead to (rows in italic indicates that the regression is more severe than the problem the
uplift intended to address).

Uplift Regression Frequency Probability

compile crash 2 0.67
compile compile 1 0.33
crash crash 24 0.50
crash func 13 0.27
crash compile 5 0.10
crash perf 3 0.06
crash other 2 0.04
crash security 1 0.02
func func 35 0.57
func crash 14 0.23
func perf 7 0.11
func compile 4 0.07
func other 1 0.02
improve crash 7 0.37
improve func 7 0.37
improve compile 2 0.11
improve perf 2 0.11
improve security 1 0.05
perf func 5 0.50
perf crash 4 0.40
perf perf 1 0.10
security func 8 0.33
security crash 7 0.29
security security 5 0.21
security compile 2 0.08
security other 1 0.04
security perf 1 0.04

used for testing, i.e., it has no impact on end users. Thus, we considered that
the former is more important.

Results. Figure 7 depicts the proportion of uplifted patches that caused a
more, same, or less severe regression. Tables 13 and 14 show the frequency
and probability of a regression that an uplift on the Beta or Release channel
can lead to.

In the Beta channel, more than one third (37.5%) of the manu-
ally examined uplifted patches led to a regression that is more severe
than the problem they intended to address. Most of these patches were

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 29

Table 14 The frequency and probability that an uplift in the Release channel can lead to.

Uplift Regression Frequency Probability

crash func 6 0.55
crash crash 5 0.45
func func 1 0.50
func perf 1 0.50
security func 2 0.50
security security 2 0.50

used to introduce improvements or new features (but caused crashes/hangs
and broken functionalities), to fix broken functionalities (but caused crash-
es/hangs), or to fix performance degradation (but caused crashes/hangs and
broken functionalities). In addition, we observed that crash/hang and broken
functionality are the most frequent and the most probable regressions, which
ranked as the top regression for each type of the analyzed uplifts. Especially,
50% of the patches uplifted to fix a crash caused other crashes, and 50% of the
patches uplifted to fix a broken functionality broke other functionalities. Re-
garding the patches uplifted for security vulnerabilities (which have the worst
impact on users), 21% of them caused other severity vulnerabilities and 29%
of them caused crashes/hangs.

In the Release channel, none of the examined uplifted patches
led to a regression that is more severe than the problem the patches
intended to address. This result is expected because patches uplifted for the
Release channel should have been more strictly reviewed and approved. The
examined patches are only used to fix security vulnerabilities, crashes/hangs,
and broken functionalities, which respected the uplift rules for the Release
channel. 33.3% of these patches led to a regression as the same type of problem
they intended to address. All these patches have a high probability to cause a
new broken functionality.

In general, developers and release managers should carefully uplift patches
that aim to fix security vulnerabilities, crashes/hangs, or broken functionali-
ties because these patches may lead to the same kind of problems they intend
to address and these problems have the worst impact on end users. Uplifting
patches that aim to introduce improvement (or new features) or to fix perfor-
mance degradation should also be prudently inspected because these patches
may cause regressions that are more severe than the problem they intended
to address. Although none of the examined patches that were uplifted to the
Release channel caused a more severe regression than what they intended
to address, around half of the patches fixing the top severe problems (i.e.,
crash/hang or severity problems) caused other severe problems. More QA ef-
fort needs to be invested on these patches, to avoid releasing severe regression
to users.

Release managers were, as one might have predicted, happy to see our
results regarding the release channel, but were not surprised because, com-
pared to other channels, release uplifts are inspected with more QA efforts
and are more carefully approved. When using the metrics listed in Tables 1

30 Marco Castelluccio et al.

to 5 to compare the differences between Beta uplifts that caused more severe
regressions than they fixed and other manually analyzed Beta uplifts14, we
observed that the former uplifts tended to happen closer to the release date
and tended to have a shorter review duration (but these results are not sta-
tistically significant as the sample we analyzed is probably small). Release
managers thought that these patches might have been uplifted in a rush and
under pressure, which would explain both the closeness to the release date and
the short review duration.

RQ5: Could some of the regressions have been prevented through more exten-
sive testing on the channels?

Motivation. Given the results of RQ2, we set out to find whether any re-
gressions could actually have been prevented by more extensive testing on the
stabilization channels. In this research question, we tried to identify, from a
selected sample of regressions that hit users, which issues were reproducible
and how they were found by Mozilla. Our result can inform developers and
release managers whether more extensive testing efforts would be effective in
preventing regressions and how many regressions could possibly be prevented.
It should be noted that there is an important trade-off that release managers
take into account when deciding about uplifts: the necessity of shipping fea-
tures as fast as possible versus the need to not introduce regressions. More
extensive testing efforts might improve the second aspect, but hamper the
first.

Approach. To identify regressions that were shipped to users (that is, the
regressions caused by patches that were uplifted to a version of Firefox and
fixed only in a later version of Firefox; for example, a patch that is uplifted
to Firefox 57 and causes a regression that is only fixed in Firefox 58), we used
Bugzilla status flags (cf status firefox), which specify the status of the
issue for a given Firefox version (e.g., cf status firefox48 set to “affected”
means that the issue affects Firefox 48). In particular, “affected” means that
the issue exists for the given version; “wontfix” means that the issue exists
and that Mozilla does not plan on fixing it for that specific version; “fixed”
means that the issue is fixed in the given version; “verified” means that the
issue is fixed in the given version and is also verified to be fixed either by the
reporter, QA, a volunteer, or a developer who could reproduce the problem
(but not by the developer who fixed it). Given an uplift fixing Issue A and
a resulting regression tracked in Issue B, we identified it as being shipped to
users if Issue A was set as fixed or verified in an earlier version than Issue B.

We then manually analyzed the identified regressions, categorizing both
whether an issue was reproducible and how the issue was found. We have

14 Please refer to the detailed comparison in our data repository:
https://github.com/swatlab/uplift-analysis

https://github.com/swatlab/uplift-analysis

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 31

Table 15 How an uplift regression is reproducible.

Reproducible Description
By all Everybody was able to reproduce.
By some Somebody was able to reproduce (depending for ex-

ample on the version of a driver, or a specific version
of an operating system, and so on).

By the reporter
only

Nobody else except the reporter was able to repro-
duce.

By no one Nobody was able to reproduce (and the issue was
found, for example, by analyzing crash reports).

Table 16 How a regression was found.

Found Description
By tooling The issue was found by fuzzing or static analysis.
By developers The issue was found by Mozilla developers (by code

inspection, by running tests that were not included in
Firefox’ test suites, or by running special tools such as
Valgrind or ASan) or by an external developer (e.g.,
a security researcher).

On a widely used
feature/website/-
config

The issue was found by a user (an end-user, a volun-
teer, or a website developer) on a widely used feature,
on a widely used website, or in a widespread configu-
ration.

On a rarely used
feature/website/-
config

The issue was found by a user on a rarely used feature
or rarely used website or on an uncommon configura-
tion.

Via telemetry The issue was found by analyzing crash reports or
performance measurements from the field.

analyzed all Release regressions, and a representative sample of 152 Beta re-
gressions (which corresponds to a confidence level of 95% and a confidence
interval of 5%).

Table 15 and Table 16 show and describe how an uplift regression is re-
producible and how it was found. We considered the regressions as possibly
preventable by additional testing if they were not only reproducible by the
issue reporter and were found either on a widely used feature/website/config
or via telemetry. If they were reproducible only by the issue reporter, addi-
tional testing would not help. The regressions found via telemetry could be
prevented if the data (crash reports and measurements) were analyzed in a
timely manner (for example if there was an alerting system in place). We con-
sidered the regressions as not easily preventable, if they were reproducible but
found on a rarely used feature/website/configuration, or found via telemetry
but not reproducible, since manual testing is likely going to focus on widely
used features/websites/configurations rather than seldom used ones, and is-
sues noticed via telemetry are harder to fix if they cannot be reproduced.
We consider the remaining regressions as hardly preventable: the regressions
found by tooling could hardly be prevented, as the specific tooling was not
available at the time the uplift was made (they could be prevented now that
it is available); the regressions found by developers (e.g., by code inspection)
could hardly be prevented by additional testing. They could, in some cases,
be mitigated by more detailed code reviews.

32 Marco Castelluccio et al.

not reproducible: 8.2%
not reproducible (except by reporter): 4.1%

reproducible: 74.0%

reproducible (but not by everyone): 5.5%
unknown: 8.2%

(a) Beta channel

not reproducible: 8.3%
not reproducible (except by reporter): 8.3%

reproducible: 75.0% reproducible (but not by everyone): 8.3%

(b) Release channel

Fig. 8 Whether the regressions caused by an uplift were reproducible.

developers: 27.4%telemetry: 17.8%

rarely used feature/
website/config: 12.3%

tooling: 19.2%
widely used feature/
website/config: 23.3%

(a) Beta channel

developers: 33.3%

telemetry: 16.7%

rarely used feature/
website/config: 16.7%

tooling: 8.3%
widely used feature/
website/config: 25.0%

(b) Release channel

Fig. 9 How the regressions caused by uplifts were found.

Results. Figure 8 shows the proportion of reproducibility on the regressions.
On Beta, 58 out of 73 regression issues were reproducible by all or by some
developers, 9 were not reproducible or reproducible only by the reporter. The
reproducibility of the remaining 6 regressions cannot be identified. On Re-
lease, 10 out of 12 were reproducible by all or by some developers, 2 were not
reproducible or reproducible only by the reporter. To summarize, 79.5% of
the regressions caused by Beta uplifts and 83.3% of the regressions
caused by Release uplifts were reproducible.

Figure 9 shows the distribution of ways through which the regressions
were found by Mozilla. In Beta, 20 regressions were found by developers, 14
were found by tooling, 13 were found via telemetry, 17 were found by users
on widely used features/websites/configurations, 9 were found on rarely used
features/websites/configurations. In Release, 4 were found by developers, 1
was found by tooling, 2 were found via telemetry, 3 were found by users on
widely used features/websites/configurations, 2 were found on rarely used fea-
tures/websites/configurations.

Between the two channels, both the reproducibility and how the issues were
found have similar characteristics (i.e., the proportions are very similar), as
can be seen from the figures mentioned above.

In order to understand the share of regressions that could have possibly
been prevented, we compare the numbers of the possibly preventable, not eas-
ily preventable, and hardly preventable regressions in each channel. In Beta,
20 regressions (around 30%) could have been possibly prevented

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 33

according to our definition; 13 regressions (around 20%) could not be
prevented easily; 34 regressions (around 50%) could hardly be prevented. In
Release, 3 regressions (around 25%) could have been possibly pre-
vented according to our definition; 3 regressions (around 25%) could not
be prevented easily; 6 regressions (around 50%) could hardly be prevented.
We notice that the proportions are similar between the two channels; meaning
that our discussion applies to both channels.

From these results, we suggest that developers and release managers should:

1. Try to detect issues via telemetry as early as possible (e.g., using alerting
systems), so that they can also be fixed in time;

2. Perform more QA on the stabilization channels, e.g., trying more diverse
configurations, as around 24% of the issues were reproducible and found
on widely used features.

Coming back to the trade-off aspect we briefly discussed in the “Motiva-
tion” part, it applies to our suggestions too. An effective alerting system should
not need to collect data for too long before being able to produce alerts, oth-
erwise if release managers had to wait in order to check whether there are
alerts, the release process would be slowed down (in this case, a higher num-
ber of users on the stabilization channels might help because the more users
the more quickly data is available to make decisions). The same applies to
QA, in the best case scenario the QA efforts should be increased in a parallel
way or should be more directed towards widely used features, to avoid slowing
down the release process.

Release managers have recently introduced changes to avoid regressions like
these to go unnoticed: Mozilla now performs QA on the Nightly channel for new
features directly when they are introduced. This allows more time to detect
regressions and to fix them. We found (not a statistically significant result
probably due to the small size of the sample) that the possibly preventable
issues tend to have been on Nightly for longer (higher landing delta), but tend
to be uplifted later, closer to the release date (lower release delta)15. Given
the additional QA on the Nightly channel, the situation of regressions (at
least for the issues that could possibly be prevented by additional QA) may
be improved soon. Verifying the potential improvement will be a part of our
future work.

5 Threats to Validity

In this section, we discuss the threats to validity of our study following the
guidelines for case study research [46].

Construct validity threats are concerned with the relationship between the-
ory and observation. In this study, the construct validity threats are mainly
due to measurement errors. In RQ2, to find ineffective uplifts, we looked for

15 Please refer to the detailed comparisons in our data repository:
https://github.com/swatlab/uplift-analysis

https://github.com/swatlab/uplift-analysis

34 Marco Castelluccio et al.

cases where an issue linked to the uplift had been, after the uplift operation,
reopened, cloned, duplicate, or resolved by multiple patches. To prevent false
positive results due to this heuristic, we took a series of measures to remove
noisy results from our dataset (see the “Approach” part of RQ2) and manually
examined all candidates of ineffective uplifts. We believe that the eventually
included results have a high precision. In addition, some correct candidates
might not be detected by our heuristic, i.e., the false negatives. For example,
some ineffective uplifts can be beyond our expected cases (such as reopened,
cloned or duplicated issues) or mislabelled by developers in Bugzilla. However,
instead of finding all possible ineffective uplifts, the aim of this research ques-
tions is to identify precise and representative ineffectively uplifted patches,
analyzing their characteristics and propose methods for software practitioners
to avoid them. In RQ3, we observed that uplifted patches with more lines of
code are more likely to be fault-inducing. This result is not surprising if we
assume that the fault density is uniformly distributed in the studied system.
Nevertheless, as suggested by previous studies, software practitioners should
always carefully approve patches modifying a large number of lines.

Internal validity threats concern factors that affect the independent vari-
able with respect to causality. Since we do not draw any casual conclusion,
threats to the internal validity are not applicable for our study.

Conclusion validity threats concern the relationship between the treat-
ments and the outcome. We paid attention not to violate the assumptions
of the statistical tests that are performed in the paper. Specifically, in RQ1
and RQ3, we applied non-parametric tests that do not require making as-
sumptions on the distribution of our dataset. We used SentiStrength as the
sentiment detection tool. We compared the performance of this tool with Sen-
tiStrengthSE [14], the version tailored for software engineering, and obtained
the same results, i.e., no significant differences between accepted and rejected
uplifts in any channel, and only a small effect size of the differences on the
module owners’ sentiment between clean and fault-inducing uplifts. Another
reason why we prefer SentiStrength over SentiStrengthSE is that the former
tool can be used from the command line and can be easily integrated into our
automated scripts. On the contrary, currently the latter tool can only be exe-
cuted from a user interface. In addition, when ingesting a large dataset such as
the one we used in this study, the latter tool cannot be as easily deployed into
a distributed environment. Before conducting the case study, we limited our
studied dataset within a duration that covers consecutive series of relatively
stable periods on all the three uplift channels. In addition, we used a keyword
matching heuristic to identify fault-related issues. We manually validated a
random sample of 380 issues. All the authors of this paper participated in the
validation. Whenever there were diverging opinions, we set up a meeting and
discussed the issue until a consensus was reached. As a result, we found that
our heuristic can achieve a precision of 87.3% and a recall of 78.2%, when
identifying fault-related issues. Moreover, we performed manual classifications
on the uplift reasons, the root causes of uplift regressions and reoccurrences,
the reproducibility of the uplift regressions, and the way by which developers

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 35

were discovered the regressions. We also manually compared the severity of
the issues that the uplifts intended to address with the severity of the regres-
sions that they led to. To mitigate potential bias that may result from our
subjective opinions, we also discussed on each of our classification conflicts
until reaching a consensus. However, as any other taxonomic study, we cannot
guarantee a 100% of accuracy on our classification results. Future replications
are welcomed to validate our work. Last, we used a heuristic to detect issues
that duplicate a previous issue fixed by uplifted patches, which was inspired
by Tian et al.’s approach [41]. Besides the automated detection, we manually
confirmed every case used in our analyses to answer RQ2. Although some true
positive cases might have been missed, the goal of RQ2 is not to find all du-
plicate cases, but to understand why some uplifted patches did not completely
resolve a problem and re-occurred in the field.

External validity threats are concerned with the generalizability of our
results. In this paper, we only studied Mozilla Firefox. First, Mozilla Fire-
fox is the most studied system for issues related to rapid releases; moreover,
the system’s data are publicly available. We also have the opportunity to
perform both quantitative and qualitative analyses (including the interviews
with release managers) on this system. However, we should recognize that
our findings may not be generalizable to other systems. In the future, we
plan to collaborate with other software organizations, to validate and extend
the results of this work. In addition, more studies on other systems with
other programming languages are desirable to further validate our results.
To facilitate future replication studies, we share our datasets and scripts at:
https://github.com/swatlab/uplift-analysis. Another issue is that, in
the manual classification, although we randomly chose our samples by apply-
ing a confidence level of 95% and a confidence interval of 5%, our samples
might not precisely reflect the distributions of the uplift reasons and–or root
causes of uplift regressions on the whole Firefox dataset. Further investigations
on larger data sets are desirable.

6 Related Work

Patch uplift is an activity performed during the release engineering process.
Hence, in this section, we present and discuss relevant literature on release
engineering.

Release engineering encompasses all the activities aimed at “building a
pipeline that transforms source code into an integrated, compiled, packaged,
tested, and signed product that is ready for release” [2].

Since the adoption of the rapid release model [16] by Mozilla in 2011,
a plethora of studies have focused on the impact of rapid release strategies
on software quality. Khomh et al. [16] compared crash rates, median uptime,
and the proportion of post-release bugs between the versions of Firefox that
followed a traditional release cycle and those that followed a rapid release
cycle. They observed that short release cycles do not induce significantly more

https://github.com/swatlab/uplift-analysis

36 Marco Castelluccio et al.

bugs. However, compared to traditional releases, users experience bugs earlier
during software execution. Nevertheless, they also observed that post-release
bugs are fixed faster under the rapid release model. Khomh et al. observed,
in their extended work [17], that one of the major challenges of fast release
cycles is the automation of the release engineering process. Da Costa et al. [9]
studied the impact of Mozilla’s rapid release cycles on the integration delay of
addressed issues. They found that, compared to the traditional release model,
the rapid release model does not deliver addressed issues to end users more
quickly, which is contrary to expectations. Adams et al. [1] analyzed the six
major phases of release engineering practices and proposed a roadmap for
future research, highlighting the need for more empirical studies that validate
the best practices and assess the impact of release engineering processes on
software quality.

Another important aspect of release engineering that has been investigated
by the community is the integration of urgent patches that are used to fix
severe problems, such as frequent crashes or security bugs, or to introduce
important features. Urgent patches break the balance between new feature
work and software quality, and hence could lead to faults and failures. Hassan
et al. [12] investigated emergency updates for top Android apps and identified
eight patterns along the following two categories: “updates due to deployment
issues” and “updates due to source code changes”. They suggest to limit the
number of emergency updates that fall in these patterns, since they are likely
to have a negative impact on users’ satisfaction. In a recent work, Lin et
al. [19] empirically analyzed urgent updates in 50 most popular games on the
Steam platform, and observed that the choice of the release strategy affects
the proportion of urgent updates, i.e., games that followed a rapid release
model had a higher proportion of urgent patches in comparison to those that
followed the traditional release model. Rahman et al. [29] examined the “rush
to release” period on Linux and Chrome. They observed that experienced
developers are often allowed to make changes right before stabilization occurs
and these changes are added directly to the stabilization line. They also found
that there is a rush in the number of commits right before a new release is
added to the stabilization channel, to add final features. In a following work,
Rahman et al. [30] observed that feature toggles [20] can be effectively turned
off faulty urgent patches, which limits the impact of faulty patches.

To the best of the authors’ knowledge, none of these prior works has empiri-
cally investigated how urgent patches in the rapid release model affect software
quality in terms of fault-proneness, and how the reliability of the integration
of urgent updates could be improved. This paper fills this gap in the literature
by investigating the reliability of the Mozilla’s uplift process, since uplifted
patches are urgent updates.

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 37

7 Conclusion

Mozilla follows a rapid release model, which uses 18 weeks to deliver fault
fixes and new features to users. Frequently, certain patches that fix critical
issues, or implement high-value features are promoted directly from the de-
velopment channel to a stabilization channel, because they are too urgent and
cannot wait for the next release train. This practice, known as patch uplift,
is risky because the time allowed for the stabilization of the uplifted patches
is short. In average, 8% of uplifted patches introduced a regression in the
code of Firefox. In this paper, we investigated the decision making process of
patch uplift at Mozilla and observed that release managers are more inclined
to accept patch uplift requests that concern certain specific components, and–
or that are submitted by certain specific developers (RQ1). We found that
4% of the issues fixed by patch uplift were not effectively resolved but were
later reopened, cloned, duplicated, or fixed by additional uplifts. Two frequent
root causes were identified from our manual analysis, i.e., the original uplifts
only partially fixed the issues or caused regressions (RQ2). We examined the
characteristics of uplifted patches that introduced regressions in the code and
found that they are more complex than clean uplifts, and they tend to change
a higher number of lines of code. Most regressions are caused by patch up-
lifts aimed at fixing wrong functionalities and crashes. The most common root
causes of faults in uplifted patches are semantic and memory errors (RQ3). In
addition, through a manual analysis on a sample of the uplifts that introduced
regressions, we found that more than one third of the fault-inducing Beta up-
lifts led to a regression that is more severe than the problem they aimed to
address (RQ4). Last but not least, we observed that 25% to 30% of the regres-
sions due to Beta and Release uplifts could be possibly prevented because they
can be reproduced not only by the issue reporter but also by developers and
were found on widely used feature/website/configuration or via the Mozilla
telemetry (RQ5). We hope that software organizations take our findings and
suggestions as a reference to improve their uplift (or urgent patch approval)
strategy.

References

1. Adams B, McIntosh S (2016) Modern release engineering in a nutshell–why
researchers should care. In: Software Analysis, Evolution, and Reengineer-
ing (SANER), 2016 IEEE 23rd International Conference on, IEEE, vol 5,
pp 78–90

2. Adams B, Bellomo S, Bird C, Marshall-Keim T, Khomh F, Moir K (2015)
The practice and future of release engineering: A roundtable with three
release engineers. IEEE Software 32(2):42–49

3. An L, Khomh F (2015) An empirical study of highly-impactful bugs in
Mozilla projects. In: Proceedings of the IEEE International Conference on
Software Quality, Reliability and Security (QRS), IEEE

38 Marco Castelluccio et al.

4. An L, Khomh F, Adams B (2014) Supplementary bug fixes vs. re-opened
bugs. In: Source Code Analysis and Manipulation (SCAM), 2014 IEEE
14th International Working Conference on, IEEE, pp 205–214

5. Castelluccio M, An L, Khomh F (2017) Is it safe to uplift this patch?: An
empirical study on mozilla firefox. In: Software Maintenance and Evolution
(ICSME), 2017 IEEE International Conference on, IEEE, pp 411–421

6. Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological Bulletin 114(3):494

7. coverity.com (2017) Coverity tool. http://www.coverity.com, online; Ac-
cessed March 31st, 2017

8. Csardi G, Nepusz T (2006) The igraph software package for complex net-
work research. InterJournal, Complex Systems 1695(5):1–9

9. Da Costa DA, McIntosh S, Kulesza U, Hassan AE (2016) The Impact of
Switching to a Rapid Release Cycle on Integration Delay of Addressed
Issues: An Empirical Study of the Mozilla Firefox Project. In: Proceed-
ings of the 13th International Conference on Mining Software Repositories
(MSR), pp 374–385

10. Dmitrienko A, Molenberghs G, Chuang-Stein C, Offen W (2005) Analysis
of Clinical Trials Using SAS: A Practical Guide. SAS Institute, URL http:

//www.google.ca/books?id=G5ElnZDDm8gC

11. Fischer M, Pinzger M, Gall H (2003) Populating a release history database
from version control and bug tracking systems. In: Proceedings of the 29th
International Conference on Software Maintenance (ICSM), IEEE, pp 23–
32

12. Hassan S, Shang W, Hassan AE (2016) An empirical study of emergency
updates for top android mobile apps. Empirical Software Engineering pp
1–42

13. Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical meth-
ods, 3rd edn. John Wiley & Sons

14. Islam MR, Zibran MF (2017) Leveraging automated sentiment analysis
in software engineering. In: Mining Software Repositories (MSR), 2017
IEEE/ACM 14th International Conference on, IEEE, pp 203–214

15. Jalbert N, Weimer W (2008) Automated duplicate detection for bug track-
ing systems. In: Dependable Systems and Networks With FTCS and DCC,
2008. DSN 2008. IEEE International Conference on, IEEE, pp 52–61

16. Khomh F, Dhaliwal T, Zou Y, Adams B (2012) Do faster releases improve
software quality? An empirical case study of Mozilla Firefox. In: Proceed-
ings of the 9th IEEE Working Conference on Mining Software Repositories
(MSR), IEEE, pp 179–188

17. Khomh F, Adams B, Dhaliwal T, Zou Y (2014) Understanding the impact
of rapid releases on software quality. Empirical Software Engineering pp
1–38

18. Kim D, Wang X, Kim S, Zeller A, Cheung SC, Park S (2011) Which
crashes should I fix first?: Predicting top crashes at an early stage to
prioritize debugging efforts. IEEE Transactions on Software Engineering
37(3):430–447

http://www.coverity.com
http://www.google.ca/books?id=G5ElnZDDm8gC
http://www.google.ca/books?id=G5ElnZDDm8gC

An Empirical Study of Patch Uplift in Rapid Release Development Pipelines 39

19. Lin D, Bezemer CP, Hassan AE (2016) Studying the urgent updates of
popular games on the steam platform. Empirical Software Engineering pp
1–32

20. martinfowler.com (2017) Feature toggle. https://martinfowler.com/

bliki/FeatureToggle.html, online; Accessed March 22nd, 2017
21. MDN Web Docs (2017) A Bug’s Life. https://developer.mozilla.org/

en-US/docs/Mozilla/QA/A_Bugs_Life, online; Accessed May 20th, 2018
22. Mike T, Kevan B, Georgios P, Di C, Arvid K (2010) Sentiment in short

strength detection informal text. JASIST 61(12):2544–2558
23. Mozilla wiki (2016) Priority Field. https://wiki.mozilla.org/

Bugmasters/Projects/Folk_Knowledge/Priority_Field, online; Ac-
cessed May 20th, 2018

24. Mozilla wiki (2018) Mozilla Modules. https://wiki.mozilla.org/

Modules, online; Accessed September 22nd, 2018
25. Mozilla wiki (2018) Mozilla Release Management Uplift Rules. https:

//wiki.mozilla.org/Release_Management/Uplift_rules, online; Ac-
cessed May 20th, 2018

26. Mozilla wiki (2018) Mozilla Tree Sheriffs. https://wiki.mozilla.org/
Sheriffing, online; Accessed May 20th, 2018

27. Mozilla wiki (2018) Mozilla Tree Sheriffs - Backouts. https://wiki.

mozilla.org/Sheriffing/How_To/Backouts, online; Accessed Septem-
ber 22nd, 2018

28. Park J, Kim M, Ray B, Bae DH (2012) An empirical study of supplemen-
tary bug fixes. In: Proceedings of the 9th IEEE Working Conference on
Mining Software Repositories, IEEE Press, pp 40–49

29. Rahman MT, Rigby PC (2015) Release stabilization on linux and chrome.
IEEE Software 32(2):81–88

30. Rahman MT, Querel LP, Rigby PC, Adams B (2016) Feature toggles:
practitioner practices and a case study. In: Proceedings of the 13th Inter-
national Conference on Mining Software Repositories, ACM, pp 201–211

31. Romano J, Kromrey JD, Coraggio J, Skowronek J (2006) Appropriate
statistics for ordinal level data: Should we really be using t-test and co-
hensd for evaluating group differences on the nsse and other surveys. In:
annual meeting of the Florida Association of Institutional Research, pp
1–33

32. Runeson P, Alexandersson M, Nyholm O (2007) Detection of duplicate
defect reports using natural language processing. In: Proceedings of the
29th international conference on Software Engineering, IEEE Computer
Society, pp 499–510

33. scitools.com (2016) Understand tool. https://scitools.com, online; Ac-
cessed March 31st, 2016

34. Shihab E, Ihara A, Kamei Y, Ibrahim WM, Ohira M, Adams B, Has-
san AE, Matsumoto Ki (2012) Studying re-opened bugs in open source
software. Empirical Software Engineering pp 1–38

35. SlideShare (2016) A. Laforge. Chrome release cycle. Job title: Technical
Program Manager (Chrome) at Google. http://www.slideshare.net/

https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://developer.mozilla.org/en-US/docs/Mozilla/QA/A_Bugs_Life
https://developer.mozilla.org/en-US/docs/Mozilla/QA/A_Bugs_Life
https://wiki.mozilla.org/Bugmasters/Projects/Folk_Knowledge/Priority_Field
https://wiki.mozilla.org/Bugmasters/Projects/Folk_Knowledge/Priority_Field
https://wiki.mozilla.org/Modules
https://wiki.mozilla.org/Modules
https://wiki.mozilla.org/Release_Management/Uplift_rules
https://wiki.mozilla.org/Release_Management/Uplift_rules
https://wiki.mozilla.org/Sheriffing
https://wiki.mozilla.org/Sheriffing
https://wiki.mozilla.org/Sheriffing/How_To/Backouts
https://wiki.mozilla.org/Sheriffing/How_To/Backouts
https://scitools.com
http://www.slideshare.net/Jolicloud/chrome-release-cycle

40 Marco Castelluccio et al.

Jolicloud/chrome-release-cycle, online; Accessed 06 February 2016
36. Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce

fixes? In: ACM sigsoft software engineering notes, ACM, vol 30, pp 1–5
37. Sun C, Lo D, Wang X, Jiang J, Khoo SC (2010) A discriminative model

approach for accurate duplicate bug report retrieval. In: Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1, ACM, pp 45–54

38. Sun C, Lo D, Khoo SC, Jiang J (2011) Towards more accurate retrieval of
duplicate bug reports. In: Proceedings of the 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering, IEEE Computer
Society, pp 253–262

39. Tan L, Liu C, Li Z, Wang X, Zhou Y, Zhai C (2014) Bug characteristics
in open source software. Empirical Software Engineering 19(6):1665–1705

40. The Bugzilla Guide (2017) The Bugzilla Guide. https://www.bugzilla.
org/docs/2.20/html/bugreports.html, online; Accessed May 20th,
2018

41. Tian Y, Sun C, Lo D (2012) Improved duplicate bug report identification.
In: Software Maintenance and Reengineering (CSMR), 2012 16th Euro-
pean Conference on, IEEE, pp 385–390

42. Tourani P, Adams B (2016) The impact of human discussions on just-in-
time quality assurance: An empirical study on openstack and eclipse. In:
Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE
23rd International Conference on, IEEE, vol 1, pp 189–200

43. VMware (2017) JIRA. https://jira.atlassian.com/, accessed March
30th, 2017

44. Wang X, Zhang L, Xie T, Anvik J, Sun J (2008) An approach to detecting
duplicate bug reports using natural language and execution information.
In: Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International
Conference on, IEEE, pp 461–470

45. Wikipedia (2018) Okapi BM25. https://en.wikipedia.org/wiki/

Okapi_BM25, online; Accessed May 20th, 2018
46. Yin RK (2002) Case Study Research: Design and Methods - Third Edition,

3rd edn. SAGE Publications
47. YouTube (2014) Keynote of the 2014 Release Engineering confer-

ence. https://www.youtube.com/watch?v=Nffzkkdq7GM, online; Ac-
cessed March 30th, 2017

http://www.slideshare.net/Jolicloud/chrome-release-cycle
http://www.slideshare.net/Jolicloud/chrome-release-cycle
https://www.bugzilla.org/docs/2.20/html/bugreports.html
https://www.bugzilla.org/docs/2.20/html/bugreports.html
https://jira.atlassian.com/
https://en.wikipedia.org/wiki/Okapi_BM25
https://en.wikipedia.org/wiki/Okapi_BM25
https://www.youtube.com/watch?v=Nffzkkdq7GM

	Introduction
	Mozilla Patch Uplift Process
	Case Study Design
	Case Study Results
	Threats to Validity
	Related Work
	Conclusion

